اسمدة متقدم 5

L5 Gaseous losses of nitrogen

Nitrogen could be lost from soil in gases forms through :

1- Denitrification,

a-biochemical reduction of nitrate under anaerobic conditions.

b- chemical reactions involving nitrite under areobic conditions. (nitrogen deficit)

2 -Volatile losses of ammonia gas from surface of alkaline soils.

Dentrification

a-biochemical reduction :

when soils become waterlogged , oxygen is excluded and anaerobic decomposition take place. Some anaerobic organisms have the ability to obtain their oxygen from nitrates and nitrites with accompanying release of nitrogen and nitrous oxides. The probable pathways whereby these losses come about :

$$NO_3 \rightarrow NO_2 \rightarrow NO \rightarrow N_2O \rightarrow N_$$

 * The organisms responsible for dentnitrification are : Pseudomonas, Micrococcus, Achromobacter, and Bacillus. Several autortrophs are also capable of reducing nitrates including , Thiobacillus denitrifcans and Thiobacillus thioparus.

- * Energy relations :
 - under aerobic conditions microbes use O₂ as final electron acceptor

 $C_{6} H_{12} O_{6} + 6O_{2} \longrightarrow 6CO_{2} + 6H_{2} O + energy$ - under anaerobic microbes use NO₃ as final electron acceptor $C_{6} H_{12} O_{6} + 4NO_{3} \longrightarrow 6CO_{2} + 6 H_{2} O + N_{2} + energy$ (nitrate respiration)
energy obtain in aerobic resp. > in anaerobic condition
(38 ATPS) (2ATPS)

* Factors affected biological denitrification

- pH

determine kind of gases evolved. (show how?)

- O.M. O.M dentrification (why?)
- NO₃

take place under wide range

- Soil texture

	soil type	N loss in 40 day
	sand	11- 25
	clay	16-31
	peat	19-40
2	0 ₂	> dentrfication

 soil moisture content (water filled space, WFS) most important factor among all.
 moisture denitrification

Figure 3.

Relationship between water-filled pore space and relative amount of microbial nitrification, denitrification and respiration (Linn and Doran, 1984)

浙

* Nitrate and NO₂ are participating compounds in both dentrification and nitrifications through diffusion and mass flow can move from aerobic to anaerobic and vice versa. The co- existence of oxidized and reduced zones or layers is illustrated in fig below

Figure 5.

Schematic presentation of the processes and equilibria of NH₄⁺ in respect to NH₃ volatilization

- b- chemodentirfication (N- deficit)
 - it is not carried by microorganisms.
 - important in acid soil and occur mostly in subsoil.
 - at least three mechanisms have been suggested , all of which relate to NO_2 decomposition

i- decomposition of ammonium nitrite

 $NH_4 NO_2 \longrightarrow 2H_2O + N_2$

II- Van Slyke reaction

 $RNH_2 + HNO_2 \longrightarrow ROH + H_2O + N_2$

III- spontaneous decomposition of nitrous acid

 $3HNO_2 \longrightarrow 2NO + HNO_3 + N_2$

Volatilization of NH₃

When urea or any nitrogen fertilizers contain NH_4 added to alkaline soil its N could be subject to volatilization as NH_3 .

Terman & Hunt (1969) first suggest the chemical Rx. involved in

NH₃ losses from inorganic N material.

Fenn and Kissel (1973) presented that Rx. as

X(NH₄) Y + DCaCo₃ \rightarrow D(NH₄) ₂ CO₃ + Ca_n Y_x unstable compound H₂ O NH₃ + 2H₂ O + CO₂ NH₄ OH

amount of NH₄OH formed depends on the solubility of Ca_n Y_x Feagly & Hossner (1977) suggested that at soil with pH 8.5 or less the compound NH₄ HCO₃ formed instate of(NH₄)₂ CO₃. if the compound insoluble the Rx. shift to right so, more OH produce and pH of the soil increased which lead to more NH₃ volatilization .
 if the compound soluble the Rx. shift to left and pH of the soil depend on initial soil PH .

pH

* results of some experiments:

i- Feen and Miyamate (1981) , studied effect of using $(NH_4)_2 SO_4$ on volatilization of NH_3

$$(NH_4)_2 SO_4 + CaCO_3 \longrightarrow (NH_4)_2 CO_3 + CaSO_4$$

(insoluble)
 $NH_3 + 2H_2 O + 2CO_2$

II- other study :

effect of using NH_4NO_3 on volatilization of NH_3 2 $NH_4NO_3 + CaCO_3$ (NH_4)₂ $CO_3 + Ca(NO_3)_2$ (soluble)

iii- organic fertilizers (urea) $CO(NH_2)_2 \longrightarrow (NH_4)_2 CO_3 + CO_2 + H_2 O$ urease

* most of NH₃ volatilization occurs during the 3rd and 5th days after fertilizers application. Other studies showed that volatilization occur soon or after few hours of application. * Volatilization of NH₃ can be described in three steps:

I- NH_4^+ / NH_3 equilibrium;

ii- liquid / gas equilibrium;

iii- mass transfer to the atmosphere .

Steps I & ii involve a physio- chemical equilibrium. An important parameter is the equilibrium constant pk_a (being the negative log. of the equilibrium constant for the RX.)

NH₄⁺ NH₃ + H⁺ ------1

* $pk_a = 9.4$ at 20° C in water solution. This means that NH_3

- at pH 6 is only 0.04% of total N ($NH_4 + NH_3$)

- at pH 7 is about 0.4% of total N

- at pH 8 is about 4% of total N

- at pH 9 is about 40%

* Carbonate ($CO_3 - 2$) and bicarbonate($HCO_3 - 2$) can take up the H⁺ emitted through NH₃ volatilization

 $CO_3 - ^2 + 2H^+$ $HCO_3 + H^+$ $H^- CO_3 = CO_2 + H_2 O_{-----2}$

and thus push the rx. 1 to the right . Consequently , carbonate and bicarbonate partially neutralize acidity created by the formation of $\rm NH_3$ leading to emission of $\rm CO_2$.

Figure 6. Influence of the pH on the equilibrium between NH₄⁺ and NH₃ (Court *et al.*, 1964)

Chemical and physical parameters that control absolute NH₃ volatilization :

1- Nitrogen application rate

Velks and Stumpe (1978) stated that NH_3 losses from solution is a 1st order reaction. However, this is not necessarily applied to NH_3 losses from soils. Results of some studies:-

- Fenn and Kissel (1974)

used two sources for N fertilizers $NH_4 NO_3$ and $(NH_4)_2 SO_4$ at different rates to study NH_3 volatilization at different temps. Results obtained showed that volatilization differ for different sources.

 $(NH_4)_2$ SO4 \longrightarrow losses with temp. and application rate. NH₄ NO₃ \longrightarrow losses did not effected by rate , but increase with temp. -Chin and Kroontje (1963)

- after urea hydrolysis in soil NH_3 losses from $(NH_4)_2 CO_3$ is a
- first order Rx. application of energy source for urease increase hydrolysis rate .
- *If urea hydrolysis slowly, eventhough, a high rate was applied, it will chemically appear as if low rate was applied. So, factors reduce urease activity could reduce NH₃ volatilization from urea fertilizer, these factors include:
 - a- urease inhibition : several urease inhibitors are available at market . Bremener and Douglase (1971) used heavy metals at conc. 50 ppm to reduce urease activity in soil. Results showed Ag > Hg > Au > Cu (high cost).
 - use of plants extracts as urease inhibitors.
 - b- high moisture content : urea movement downward the soil(irrigation time) .
 - c- nature of organic residue (C/N ratio).
 - d- if the soil surface is relatively dry , urea hydrolysis will occur at a reduced rate , this will allow downward movement of urea by subsequent irrigation. Hydrolysis of urea within soil does not results in substantial NH₃ losses. (Results of Dr. Ali thesis)

2- Type of nitrogen fertilizers

effect of this factor on NH_3 volatilization has already been discussed.

- 3- Fertilizers placement site and application methods
 - $NH_3 NO_3$: surface banding or dribble application in soil with low CaCO₃ buffering capacity NH_3 losses will reduced. If high CaCO₃ present application will not effect NH_3 volatilization.
 - broad cast application will produce max. NH₃ losses under all conditions.
 - $(NH_4)_2 SO_4$: broadcast application as liquid would be most effective application method. However, it's solubility does not allow to use it so.

Urea $(NH_2)_2$ CO:

 - NH₃ losses under opt. conditions as high from acidic soil as from calcareous soil.

- highest lost of NH_3 , if urea- based liquid broadcasted on undecomposed surface residue.
- incorporation of urea into only a few surface mm of soil will substantially eliminate $\rm NH_3$ losses due to exposure and reaction with adsorbed soil Ca $^{+2}$.
- application of Ca or K with surfaced placed urea (urea-Ca or urea- KCl) greatly reduced NH₃ losses, then any type of surface application will be secure.
- use of acid with urea will reduce NH_3 volatilization BUT use of acid to reduce NH_3 losses in calcareous soil is questionable (find why is that ?). If such technique is used ratio of urea / acid must be more than 1. Acids used are H_2SO4 and H_3PO_4 BUT HCl and HNO_3 is not recommended

urea-nitric acid — explosive Hcl ______ toxic to plants 4 – soil C.E.C.

has little effect on NH₃ volatilization , however, Fenn & Kissel,1973 found that NH₃ volatilization from soil with C.E.C of 58 meq/100g was 50%, but in sandy soil losses reached 90% from (NH₄)₂ SO4 . 5- Temp.

volatilization increase as temp. increase

6- soil pH

plays a major role in NH₃ volatilization as already discussed.

Soil pH has significant effect on urease activity in soil . At pH < 4 urease activity decrease . Soil pH favorable for plant growth is so for uresae activity.

activity

The Acidity and Basicity of Nitrogen Fertilizers L6

- The equivalent acidity of fertilizers was expressed as the quantity of CaO₃ needed to neutralized the acidity produced by one unit of fertilizers nitrogen (9 Kg or 20 lb of N). In this regard, NH₄ NO₃, urea, anhydrous ammonia or their solutions were considered to posses the same equivalent acidity . (NH₄)₂ SO4 and monoammomium phosphate require about three times as much CaCO₃ as the foregoing materials to correct acid- forming tendencies. The acidity due to N fertilizers arises when NH₄-N is converted to nitrate in soils. Additional acidity arises from presence of anions of ammonium fertilizers.

Basic effect N- fertilizers include CaNO₃, NaNO₃, KNO₃, and calcium cyanamide. (WHY?)

Toxicity of N fertilizers to plants

- buriet

buriet has toxic effect on seed germination and plant growth. (1.5 - 2%).

Sources of Nitrogen fertilizers

hand out : The of Nitrogen Fertilizers in Agriculture Mrs. Farzna panhwar , 2004 (REQURIED)